Recherche

Thèse préparée par Michel Kamel

Titre : Anomaly detection and predicting incident/failures on the network in real time

Début de thèse : 01/06/2021
Fin de thèse : 2023

Résumé :

La croissance exponentielle des réseaux de dispositifs connectés dans le monde entier signifie que les opérateurs de télécommunications ont besoin de systèmes intelligents et performants pour aider à maintenir leurs réseaux vastes et complexes. Pour répondre aux limites des modèles de détection d’anomalies (DA) les plus populaires, les auteurs proposent un nouveau modèle géométrique multidimensionnel probabiliste pour rechercher les comportements anormaux dans l’espace de données, générer des scores d’anomalie et quantifier les facteurs d’anomalie. Ils introduisent également un algorithme pour générer un score final basé sur quatre caractéristiques dérivées des données historiques pour les données d’alarme. En outre, ils présentent un algorithme pour aider à prétraiter les données textuelles, les regrouper en classes et étiqueter dynamiquement chaque classe comme une anomalie ou non. Enfin, ils proposent une méthode qui réduit la dimensionnalité et propose un système de score d’anomalies basé sur la théorie des records. Dans l’ensemble, leurs recherches fournissent des méthodes innovantes pour détecter et prioriser les anomalies dans les réseaux de télécommunications et fournir des outils puissants pour l’analyse de données et la maintenance du réseau.

Summary

The exponential growth of connected device networks worldwide means that telecommunications operators need intelligent and efficient systems to help maintain their vast and complex networks. To address the limitations of the most popular anomaly detection (AD) models, the authors propose a new multidimensional probabilistic geometric model to search for abnormal behaviors in the data space, generate anomaly scores, and quantify anomaly factors. They also introduce an algorithm to generate a final score based on four features derived from historical data for alarm data. Additionally, they present an algorithm to assist in preprocessing textual data, clustering them into classes, and dynamically labeling each class as an anomaly or not. Finally, they propose a method that reduces dimensionality and provides an anomaly score system based on the theory of records. Overall, their research provides innovative methods for detecting and prioritizing anomalies in telecommunications networks and provides powerful tools for data analysis and network maintenance.

Mots clés :

Date de soutenance prévue : 18-07-2023

Encadrement :

Partenaires ou/et Financeurs :

Télécharger la thèse :

these

Objectifs de développement durable concernés :

Publications

  • The proliferation of interconnected devices is rapidly expanding globally, and, as a result, telecommunication operators are responsible for managing intricate and expansive networks. Consequently, there is a need for advanced and efficient systems to aid network engineers in maintaining these networks. Devices, which can also be referred to as network elements, continuously transmit essential performance […]
  • The exponential growth of connected device networks worldwide means that telecommunications operators need intelligent and efficient systems to help maintain their vast and complex networks. To address the limitations of the most popular anomaly detection (AD) models, the authors propose a new multidimensional probabilistic geometric model to search for abnormal behaviors in the data space, […]
  • With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for […]
  • Alarms data is a very important source of information for network operation center (NOC) teams to aggregate and display alarming events occurring within a network element. However, on a large network, a long list of alarms is generated almost continuously. Intelligent analytical reporting of these alarms is needed to help the NOC team to eliminate […]

Actualité