Titre : Indices de sensibilité via des méthodes à noyaux pour des problèmes d’optimisation en grande dimension
Début de thèse : 2017
Fin de thèse : 2020
Résumé : Cette thèse s’intéresse à l’optimisation sous contraintes de problèmes type « boite-noire » en grande dimension. Répandus dans les applications industrielles, elles ont généralement un coût élevé ce qui empêche d’utiliser la plupart des méthodes d’optimisation classiques. Afin de résoudre ces problèmes, la dimension de celui-ci est souvent réduite via différentes techniques telle que l’analyse de sensibilité. Un nouvel indice de sensibilité est proposé dans ces travaux afin de distinguer quelles sont les entrées du problèmes influentes et celles négligeables et d’obtenir un problème simplifié n’incluant que les premières. Notre indice, reposant sur le critère d’indépendance d’Hilbert Schmidt, fournit une connaissance de l’impact d’une variable sur la performance de la sortie ou le respect des contraintes, des aspects primordiaux dans notre cadre d’étude. Outre la caractérisation des variables influentes, plusieurs stratégies sont proposées pour traiter les paramètres négligeables. De plus, les applications industrielles coûteuses sont généralement remplacées par des modèles proxys moins coûteux qui sont optimisés de manière séquentielle. Afin de contourner les limitations dues au nombre élevé de paramètres, aussi connu sous le nom de fléau de la dimension, une extension de l’optimisation basée sur des métamodèles est proposée dans cette thèse. Grâce aux nouveaux indices de sensibilités susmentionnés, les paramètres influents sont détectés à chaque itération et l’optimisation est effectuée dans un espace de dimension inférieure.
Mots clés : Analyse de sensibilité, Grande dimension, Optimisation globale, Optimisation Bayésienne, Réduction de dimensions
Soutenance : 02-07-2020
Directeur de thèse :
- Rodolphe Le Riche : Directeur de recherche, Mines Saint-Étienne, CNRS, LIMOS
Partenariat : CIFRE Safran
Télécharger la thèse :
Publications
- This thesis treats the optimization under constraints of high-dimensional black-box problems. Common in industrial applications, they frequently have an expensive associated cost which make most of the off-the-shelf techniques impractical. In order to come back to a tractable setup, the dimension of the problem is often reduced using different techniques such as sensitivity analysis. A […]
- This thesis treats the optimization under constraints of high-dimensional black-box problems. Common in industrial applications, they frequently have an expensive associated cost which make most of the off-the-shelf techniques impractical. In order to come back to a tractable setup, the dimension of the problem is often reduced using different techniques such as sensitivity analysis. A […]
- This talk was first given at the LIMOS on July the 9th 2020 and was mainly intended for an audience of non specialists of Gaussian processes (GPs). It was then updated for the GDR MascotNum ETICS2020 school in October and the Webinar Data analytics \& AI at Mines Telecom in November. The first slides (up […]
- A determining factor to the utility of optimization algorithms is their cost. A strategy to contain this cost is to reduce the dimension of the search space by detecting the most important variables and optimizing over them only. Recently, sensitivity measures that rely on the Hilbert Schmidt Independence criterion (HSIC) adapted to optimization variables have […]
- A determining factor to the utility of optimization algorithms is their cost. A strategy to contain this cost is to reduce the dimension of the search space by detecting the most important variables and optimizing over them only. Recently, sensitivity measures that rely on the Hilbert Schmidt Independence criterion (HSIC) adapted to optimization variables have […]
- The optimization of high dimensional functions is a key issue in engineering problems but it frequently comes at a cost that is not acceptable since it usually involves a complex and expensive computer code. Engineers often overcome this limitation by first identifying which parameters drive the most the function variations: non-influential variables are set to […]
- The optimization of high dimensional functions is a key issue in engineering problems but it frequently comes at a cost that is not acceptable since it usually involves a complex and expensive computer code. Engineers often overcome this limitation by first identifying which parameters drive the most the function variations: non-influential variables are set to […]
- The optimization of high dimensional functions is a key issue in engineering problems but it often comes at a cost that is not acceptable since it usually involves a complex and expensive computer code. In practice, engineers usually overcome this limitation by rst identifying which parameters drive the most the function variations: non-inuential variables are […]