Romain QUEY

  • Activités de recherche

    Dr. Quey’s pri­ma­ry area of research is the mecha­nics and mate­rials science asso­cia­ted with defor­ma­tion pro­cesses of poly­crys­tal­line mate­rials. The gene­ral aim of the research is to deve­lop a bet­ter unders­tan­ding of the defor­ma­tion hete­ro­ge­nei­ties that arise at the micro­struc­ture scale. Such hete­ro­ge­nei­ties are cru­cial at dif­ferent stage of mate­rials’ life : when they arise during the large defor­ma­tions at the ela­bo­ra­tion stage, they drive the mecha­ni­cal res­ponse and sof­te­ning phe­no­me­na (recrys­tal­li­za­tion nuclea­tion, etc.); in the final mate­rial, they drive fatigue or rup­ture. Dr Quey’s deve­lop­ments involve both expe­ri­men­tal and nume­ri­cal inves­ti­ga­tions, and the deve­lop­ment of new theo­re­ti­cal concepts. Experiments are based on elec­tron dif­frac­tion (EBSD) and high‐​energy X‑ray dif­frac­tion at syn­cho­trons and aims at tra­cking the evo­lu­tion of indi­vi­dual grains in the bulk of the mate­rial during defor­ma­tion. Most simu­la­tions are car­ried out in using the finite ele­ment method, for which a par­ti­cu­lar empha­sis is drawn on the nume­ri­cal des­crip­tion of the poly­crys­tals (Neper soft­ware package). New concepts are drawn for the ana­ly­sis of the local micro­struc­tu­ral or mecha­ni­cal states of the mate­rial. The end goal of this research is a more fun­da­men­tal unders­tan­ding of the rela­tion bet­ween the micro­struc­ture of a mate­rial and the asso­cia­ted mecha­ni­cal pro­per­ties. Applications include metal for­ming, fatigue and rupture.

    See neper (

  • Formation

    Diplôme d’in­gé­nieur (Mécanique), INSA de Rouen, 2004
    Master recherche (Sciences des maté­riaux), Ecole des Mines de Saint‐​Etienne, 2005
    Thèse de doc­to­rat (Sciences des maté­riaux), Ecole des Mines de Saint‐​Etienne, 2009

  • Carrière

    Chargé de recherche CNRS, Saint‐​Etienne, France, 2012‐…
    Postdoc au CEA‐​LETI, Grenoble, France, 2011
    Postdoc à Cornell University, Ithaca (NY), USA, 2010

  • Principaux ouvrages

    - R. Quey and L. Renversade. Optimal poly­he­dral des­crip­tion of 3D poly­crys­tals : method and appli­ca­tion to sta­tis­ti­cal and syn­cho­tron X‑ray dif­frac­tion data. Comp. Methods Appl. Mech. Eng., 2018.
    – M. Kasemer, R. Quey, and P. Dawson. The Influence of Mechanical Constraints Introduced by beta Annealed Microstructures on the Yield Strength and Ductility of Ti‐​6Al‐​4V. J. Mech. Phys. Solids, 2017.
    – B. Mortazavi, R. Quey, H. Ostadhossein, A. Villani, N. Moulin, A.C.T. Van Duin, and T. Rabczuk. Strong ther­mal trans­port along poly­crys­tal­line tran­si­tion metal dichal­co­ge­nides revea­led by mul­tis­cale model­ling for MoS2. Appl. Mater. Today, 7:67 – 76, 2017.
    – M. Sledzinska, R. Quey, B. Mortazavi, B. Graczykowski, M. Placidi, D. Saleta Reig, D. Navarro Urrios, F. Alzina, L. Colombo, S. Roche, and C.M. Sotomayor Torres. Record Low Thermal Conductivity of Polycrystalline MoS2 films : Tuning the Thermal Conductivity by Grain Orientation. ACS Appl. Mater. Interfaces, 9:37905 – 37911, 2017.

  • Distinctions

    Prix Jean Mandel en 2015

0 documents