Stéphane AVRIL

  • Responsabilité et missions

    see HERE

  • Compétences

    biomechanics
    mechanobiology
    Biomedical engineering
    Vascular mechanics
    Soft tissues
    Computational modelling

  • Activités de recherche

    see HERE

  • Enseignement

    see HERE

  • Biographie

    see HERE

  • Formation

    see HERE

  • Carrière

    see HERE

  • Principaux ouvrages

    see HERE

  • Distinctions

    see HERE

309 documents

  • Lauranne Maes, Julie Vastmans, Stéphane Avril, Nele Famaey. A Chemomechanobiological Model of the Long-Term Healing Response of Arterial Tissue to a Clamping Injury. Frontiers in Bioengineering and Biotechnology, 2021, 8, ⟨10.3389/fbioe.2020.589889⟩. ⟨hal-04826061⟩
  • K. Genovese, P. Badel, C. Cavinato, B. Pierrat, M. Bersi, et al.. Multi-view Digital Image Correlation Systems for In Vitro Testing of Arteries from Mice to Humans. Experimental Mechanics, 2021, 61 (9), pp.1455-1472. ⟨10.1007/s11340-021-00746-1⟩. ⟨hal-04826031⟩
  • Mirunalini Thirugnanasambandam, Tejas Canchi, Senol Piskin, Christof Karmonik, Ethan Kung, et al.. Design, Development, and Temporal Evaluation of a Magnetic Resonance Imaging-Compatible In Vitro Circulation Model Using a Compliant Abdominal Aortic Aneurysm Phantom. Journal of Biomechanical Engineering, 2021, 143 (5), ⟨10.1115/1.4049894⟩. ⟨hal-04826049⟩
  • Emanuele Vignali, Emanuele Gasparotti, Simona Celi, Stéphane Avril. Fully-Coupled FSI Computational Analyses in the Ascending Thoracic Aorta Using Patient-Specific Conditions and Anisotropic Material Properties. Frontiers in Physiology, 2021, 12, ⟨10.3389/fphys.2021.732561⟩. ⟨hal-04826032⟩
  • Xuehuan He, Stéphane Avril, Jia Lu. Estimating aortic thoracic aneurysm rupture risk using tension–strain data in physiological pressure range: an in vitro study. Biomechanics and Modeling in Mechanobiology, 2021, 20 (2), pp.683-699. ⟨10.1007/s10237-020-01410-8⟩. ⟨hal-04826053⟩
  • Lauranne Maes, Julie Vastmans, Stéphane Avril, Nele Famaey. A chemomechanobiological model of the long-term healing response of arterial tissue to a clamping injury. Frontiers in Bioengineering and Biotechnology, 2021, 8, pp.589889. ⟨10.3389/fbioe.2020.589889⟩. ⟨hal-03139778⟩
  • Marzio Di Giuseppe, Solmaz Farzaneh, Massimiliano Zingales, Salvatore Pasta, Stéphane Avril. Patient-specific computational evaluation of stiffness distribution in ascending thoracic aortic aneurysm. Journal of Biomechanics, 2021, 119, pp.110321. ⟨10.1016/j.jbiomech.2021.110321⟩. ⟨hal-04826051⟩
  • Marzio Di Giuseppe, Solmaz Farzaneh, Massimiliano Zingales, Salvatore Pasta, Stéphane Avril. Patient-Specific Computational Evaluation of Stiffness Distribution in Ascending Thoracic Aortic Aneurysm. Journal of Biomechanics, In press, pp.110321. ⟨10.1016/j.jbiomech.2021.110321⟩. ⟨hal-03139856⟩
  • K. Genovese, P. Badel, C. Cavinato, B. Pierrat, M. Bersi, et al.. Multi-view Digital Image Correlation Systems for In Vitro Testing of Arteries from Mice to Humans. Experimental Mechanics, 2021, 61 (9), pp.1455-1472. ⟨10.1007/s11340-021-00746-1⟩. ⟨hal-03978160⟩
  • Lauranne Maes, Heleen Fehervary, Julie Vastmans, S. Jamaleddin Mousavi, Stéphane Avril, et al.. Corrigendum to “Constrained mixture modeling affects material parameter identification from planar biaxial tests” [J. Mech. Behav. Biomed. Mater. 95 (2019) 124–135]. Journal of the mechanical behavior of biomedical materials, 2021, 122, pp.104635. ⟨10.1016/j.jmbbm.2021.104635⟩. ⟨hal-04826044⟩