Stéphane AVRIL

  • Responsabilité et missions

    see HERE

  • Compétences

    biomechanics
    mechanobiology
    Biomedical engineering
    Vascular mechanics
    Soft tissues
    Computational modelling

  • Activités de recherche

    see HERE

  • Enseignement

    see HERE

  • Biographie

    see HERE

  • Formation

    see HERE

  • Carrière

    see HERE

  • Principaux ouvrages

    see HERE

  • Distinctions

    see HERE

202 documents

  • Ondřej Lisický, Stéphane Avril, Bastien Eydan, Baptiste Pierrat, Jiří Burša. Evaluation of image registration for measuring deformation fields in soft tissue mechanics. Strain, 2022, 58 (4), ⟨10.1111/str.12424⟩. ⟨hal-03926799⟩
  • Sabrina Ben-Ahmed, Jean-Noël Albertini, Jean-Pierre Favre, C Alberto Figueroa, Eugenio Rosset, et al.. CFD Analyses of Different Parameters Influencing the Hemodynamic Outcomes of Complex Aortic Endovascular Repair. Biological Flow in Large Vessels: Dialog Between Numerical Modeling and In Vitro/In Vivo Experiments, 1, Wiley, 2022, ⟨10.1002/9781119986607.ch2⟩. ⟨hal-04198390⟩
  • Shaojie Zhang, Joan D Laubrie, S. Jamaleddin Mousavi, Stéphane Avril, Sabrina Ben Ahmed. Patient-specific Finite Element Modeling of Aneurysmal dilatation after chronic type B aortic dissection. Computational Biomechanics for Medicine, Springer International Publishing, pp.15-38, 2022, ⟨10.1007/978-3-031-09327-2_2⟩. ⟨hal-03926741⟩
  • Jianwei Deng, Xu Guo, Yue Mei, Stephane Avril. FEniCS implementation of the Virtual Fields Method (VFM) for nonhomogeneous hyperelastic identification. Advances in Software Engineering, In press. ⟨hal-03836286⟩
  • Baptiste Pierrat, Vít Novácěk, Stéphane Avril, Frédéric Turquier. Mechanical characterization and modeling of knitted textile implants with permanent set. Journal of the mechanical behavior of biomedical materials, 2021, 114, pp.104210. ⟨10.1016/j.jmbbm.2020.104210⟩. ⟨hal-03139999⟩
  • Lauranne Maes, Julie Vastmans, Stéphane Avril, Nele Famaey. A chemomechanobiological model of the long-term healing response of arterial tissue to a clamping injury. Frontiers in Bioengineering and Biotechnology, 2021, 8, pp.589889. ⟨10.3389/fbioe.2020.589889⟩. ⟨hal-03139778⟩
  • Marzio Di Giuseppe, Solmaz Farzaneh, Massimiliano Zingales, Salvatore Pasta, Stéphane Avril. Patient-Specific Computational Evaluation of Stiffness Distribution in Ascending Thoracic Aortic Aneurysm. Journal of Biomechanics, In press, pp.110321. ⟨10.1016/j.jbiomech.2021.110321⟩. ⟨hal-03139856⟩
  • K. Genovese, P. Badel, C. Cavinato, B. Pierrat, M. Bersi, et al.. Multi-view Digital Image Correlation Systems for In Vitro Testing of Arteries from Mice to Humans. Experimental Mechanics, 2021, 61 (9), pp.1455-1472. ⟨10.1007/s11340-021-00746-1⟩. ⟨hal-03978160⟩
  • S. Jamaleddin Mousavi, R. Jayendiran, S. Farzaneh, S. Campisi, M. Viallon, et al.. Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms. Computer Methods and Programs in Biomedicine, 2021, 205, pp.106107. ⟨10.1016/j.cmpb.2021.106107⟩. ⟨hal-03727780⟩
  • Salvatore Campisi, Raja Jayendiran, Francesca Condemi, Magalie Viallon, Pierre Croisille, et al.. Significance of Hemodynamics Biomarkers, Tissue Biomechanics and Numerical Simulations in the Pathogenesis of Ascending Thoracic Aortic Aneurysms. Current Pharmaceutical Design, In press, ⟨10.2174/1381612826999201214231648⟩. ⟨hal-03139798⟩